N17/4/CHEMI/SP2/ENG/TZ0/XX/M

Markscheme

November 2017

Chemistry

Standard level

Paper 2

13 pages

This markscheme is the property of the International

Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

- 3 -

C	uesti	on	Answers	Notes	Total
1.	b		29.0 «°C» ✓	Accept range 28.8 to 29.2 °C.	1
1.	с		ALTERNATIVE 1 «volume CH₃COOH =» 26.0 «cm³» ✓	Accept values of volume in range 25.5 to 26.5 cm ³ .	
			«[CH ₃ COOH] = 0.995 mol dm ⁻³ × $\frac{50.0 \text{ cm}^3}{26.0 \text{ cm}^3}$ =» 1.91 «mol dm ⁻³ » ✓	Award [2] for correct final answer.	2
			ALTERNATIVE 2		-
			« <i>n</i> (NaOH) =0.995 mol dm ⁻³ × 0.0500 dm ³ =» 0.04975 «mol» √		
			$ \text{«[CH3COOH]} = \frac{0.04975}{0.0260} \text{dm}^3 = \text{* 1.91 \ \text{(mol \ dm}^{-3}\text{)}} \checkmark $		
1.	d	i	«total volume = $50.0 + 26.0 =$ » 76.0 cm ³ AND «temperature change 29.0 − 21.4 =» 7.6 «°C» \checkmark	Award [2] for correct final answer.	2
			« q = 0.0760 kg × 4.18 kJ kg ⁻¹ K ⁻¹ × 7.6 K =» 2.4 «kJ» ✓		

C	Questi	ion	Answers	Notes	Total
1.	d	ii		Award [2] for correct final answer. Negative sign is required for M2.	2
1.	e	I	 «initially steep because» greatest concentration/number of particles at start OR «slope decreases because» concentration/number of particles decreases ✓ volume produced per unit of time depends on frequency of collisions OR rate depends on frequency of collisions ✓ 		2
1.	e	ii	mass/amount/concentration of metal carbonate more in X <i>OR</i> concentration/amount of CH ₃ COOH more in X ✓		1

Q	uesti	on	Answers	Notes	Total
2.	а		increasing number of protons <i>OR</i> increasing nuclear charge ✓		
			 «atomic» radius/size decreases OR same number of shells OR similar shielding «by inner electrons» √ «greater energy needed to overcome increased attraction between nucleus and electrons» 		2
2.	b		atomic/ionic radius increases ✓ smaller charge density <i>OR</i> force of attraction between metal ions and delocalised electrons decreases ✓	Do not accept discussion of attraction between valence electrons and nucleus for M2. Accept "weaker metallic bonds" for M2.	2
2.	с		$P_4O_{10}\left(s\right) + 6H_2O\left(I\right) \rightarrow \ 4H_3PO_4\left(aq\right)\checkmark$	Accept " P_4O_{10} (s) + 2 H_2O (l) \rightarrow 4HPO ₃ (aq)" (initial reaction).	1
2.	d		«series of» lines <i>OR</i> only certain frequencies/wavelengths ✓ convergence at high«er» frequency/energy/short«er» wavelength ✓	M1 and/or M2 may be shown on a diagram.	2

Q	uesti	on	Answers	Notes	Total
2.	е	i	Mn ✓		1
2.	е	ii	$Mn(s) + Ni^{2+}(aq) \rightarrow Ni(s) + Mn^{2+}(aq) \checkmark$		1
2.	e	iii	wire between electrodes <i>AND</i> labelled salt bridge in contact with both electrolytes √ anions to right (salt bridge) <i>OR</i> cations to left (salt bridge) <i>OR</i> arrow from Mn to Ni (on wire or next to it) √ I = I = I + I + I + I + I + I + I + I +	Electrodes can be connected directly or through voltmeter/ammeter/light bulb, but not a battery/power supply. Accept ions or a specific salt as the label of the salt bridge.	2

(Question	Answers	Notes	Total
3.	a	PF3PF4+Lewis structure $\overrightarrow{IE} + \overrightarrow{IEI}$ $\overrightarrow{IEI} + \overrightarrow{IEI}$ $\overrightarrow{IEI} + \overrightarrow{IEI}$ $\overrightarrow{IEI} - \overrightarrow{IEI} - $	Accept any combination of dots, crosses and lines. Ignore missing brackets and positive charge. Penalize missing lone pairs once only. Do not apply ECF for molecular geometry.	4
3.	b	polar <i>AND</i> bond polarities/dipoles do not cancel out <i>OR</i> polar <i>AND</i> unsymmetrical distribution of charge √	Apply ECF from part (a) molecular geometry.	1

C	uestion	Answers	Notes	Total
4.	a	carbon: $\left(\frac{0.4490 \text{ g}}{44.01 \text{ g mol}^{-1}}\right) = 0.01020 \text{ (mol} / 0.1225 \text{ (g}))$ <i>OR</i> hydrogen: $\left(\frac{0.1840 \times 2}{18.02}\right) = 0.02042 \text{ (mol} / 0.0206 \text{ (g}))$ oxygen: $(0.1595 - (0.1225 + 0.0206)) = 0.0164 \text{ (g}) / 0.001025 \text{ (mol}))$ empirical formula: $C_{10}H_{20}O \checkmark$	Award [3] for correct final answer.	3
4.	b	temperature = 423 K OR $M = \frac{mRT}{pV} \checkmark$ $\ll M = \frac{0.150 \text{ g} \times 8.31 \text{ JK}^{-1} \text{ mol}^{-1} \times 423 \text{ K}}{100.2 \text{ kPa} \times 0.0337 \text{ dm}^3} = 156 \text{ sg mol}^{-1} \text{ ss}^{-1} \checkmark$	Award [1] for correct answer with no working shown. Accept "pV = nRT AND $n = \frac{m}{M}$ " for M1.	2

C	uestic	on		Answers		Notes	Total
5.	а		Increasing the volume, at constant temperature	Effect none/no effect AND	Reason same number of «gas» moles/molecules on both sides √	Award [1 max] if both effects are correct. Reason for increasing volume:	
			Increasing the temperature, at constant pressure	moves to left AND	«forward» reaction is exothermic √	Accept "concentration of all reagents reduced by an equal amount so cancels out in K _c expression". Accept "affects both forward and backward rates equally".	2
5.	b	i	HCO3 [−] AND H2O √				1
5.	b	ii	species that has one less p <i>OR</i> species that forms its conju <i>OR</i> species that is formed when	gate acid by accepting a pro	oton	Do not accept "differs by one proton/H ⁺ from conjugate acid".	1
5.	b	iii	oxide ion/O²- ✓				1

C	Question	Answers	Notes	Total
5.	с	insufficient data to make generalization		
		OR		
		need to consider a «much» larger number of acids		
		OR		
		hypothesis will continue to be tested with new acids to see if it can stand the test of time \checkmark		
		«hypothesis is false as» other acids/HCI/HBr/HCN/transition metal ion/BF $_3$ do not contain oxygen		2 max
		OR		
		other acids/HCI/HBr/HCN/transition metal ion/BF $_3$ falsify hypothesis \checkmark		
		correct inductive reasoning «based on limited sample» \checkmark		
		«hypothesis not valid as» it contradicts current/accepted theories/Brønsted-Lowry/Lewis theory \checkmark		

(Questi	ion		Answers		Notes	Total
6.	а	i	oxidation/redox AND acidifi OR oxidation/redox AND «acid		. ,	Accept "acidified «potassium» dichromate" OR "«acidified potassium» permanganate". Accept name or formula of the reagent(s).	1
6.	a	ii	ALTERNATIVE 1 using K ₂ 4 Compound A: orange to gre OR Compound A: orange to gre Compound B: no change A ions» √ ALTERNATIVE 2 using KM Compound A: purple to cold OR Compound A: purple to cold ions» √	een <i>AND</i> secondary hydro: een <i>AND</i> hydroxyl oxidized <i>ND</i> tertiary hydroxyl «not o <i>InO₄:</i> ourless <i>AND</i> secondary hy	wby chromium(VI) ions» ✓ exidized by chromium(VI) droxyl droxyl	 Award [1] for "A: orange to green AND B: no change". Award [1] for "A: secondary hydroxyl AND B: tertiary hydroxyl". Accept "alcohol" for "hydroxyl". Award [1] for "A: purple to colourless AND B: no change" Award [1] for "A: secondary hydroxyl AND B: tertiary hydroxyl". Accept "purple to brown" for A. 	2
6.	а	iii	Compound A B	Number of signals 5 ✓ 4 ✓	Ratio of areas 6:1:1:1:1 ✓ 6:1:1:2 ✓	Accept ratio of areas in any order. Do not apply ECF for ratios.	4

Question	Answers	Notes	Total
Question 6. b	AnswersInitiation: $Br_2 \xrightarrow{UV/hv/heat} 2Br \cdot \checkmark$ $Propagation:$ $Br \cdot + C_2H_6 \rightarrow C_2H_5 \cdot + HBr \checkmark$ $C_2H_5 \cdot + Br_2 \rightarrow C_2H_5Br + Br \cdot \checkmark$ Termination: $Br \cdot + Br \cdot \rightarrow Br_2$ OR $C_2H_5 \cdot + Br \cdot \rightarrow C_2H_5Br$	NotesReference to UV/hv/heat not required.Accept representation of radical without• (eg, Br, C2H5) if consistent throughout mechanism.Accept further bromination.Accept further bromination.Award [3 max] if initiation, propagation and termination are not stated or are incorrectly labelled for equations.Award [3 max] if methane is used 	Total
	OR		
	$C_2H_5 \bullet + C_2H_5 \bullet \rightarrow C_4H_{10}\checkmark$		