Markscheme

November 2017

Chemistry

Standard level

Paper 2

This markscheme is the property of the International
Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

Question			Answers	Notes	Total
1.	b		29.0 « ${ }^{\circ} \mathrm{C}$ »	Accept range 28.8 to $29.2{ }^{\circ} \mathrm{C}$.	1
1.	c		ALTERNATIVE 1 «volume $\mathrm{CH}_{3} \mathrm{COOH}=» 26.0$ «cm${ }^{3}$ » \checkmark $«\left[\mathrm{CH}_{3} \mathrm{COOH}\right]=0.995 \mathrm{~mol} \mathrm{dm}^{-3} \times \frac{50.0 \mathrm{~cm}^{3}}{26.0 \mathrm{~cm}^{3}}=» 1.91 « \mathrm{~mol} \mathrm{dm}^{-3} » \checkmark$ ALTERNATIVE 2 $\begin{aligned} & « n(\mathrm{NaOH})=0.995 \mathrm{~mol} \mathrm{dm}^{-3} \times 0.0500 \mathrm{dm}^{3}=» 0.04975 \text { «mol» } \\ & «\left[\mathrm{CH}_{3} \mathrm{COOH}\right]=\frac{0.04975}{0.0260} \mathrm{dm}^{3}=» 1.91 « \mathrm{~mol} \mathrm{dm}^{-3} » \checkmark \end{aligned}$	Accept values of volume in range 25.5 to $26.5 \mathrm{~cm}^{3}$. Award [2] for correct final answer.	2
1.	d	i	$\begin{aligned} & \text { «total volume }=50.0+26.0=» 76.0 \mathrm{~cm}^{3} \text { AND «temperature change } 29.0-21.4=» \\ & 7.6 \text { « }^{\circ} \mathrm{C} » \checkmark \\ & « q=0.0760 \mathrm{~kg} \times 4.18 \mathrm{~kJ} \mathrm{~kg}^{-1} \mathrm{~K}^{-1} \times 7.6 \mathrm{~K}=» 2.4 \text { «kJ» } \downarrow \end{aligned}$	Award [2] for correct final answer.	2

Question			Answers	Notes	Total
1.	d	ii	$« n(\mathrm{NaOH})=0.995 \mathrm{~mol} \mathrm{dm}^{-3} \times 0.0500 \mathrm{dm}^{3}=» 0.04975 \text { «mol» }$ OR «n $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)=1.91 \mathrm{~mol} \mathrm{dm}^{-3} \times 0.0260 \mathrm{dm}^{3}=» 0.04966$ «mol» \checkmark $« \Delta H=-\frac{2.4 \mathrm{~kJ}}{0.04975 \mathrm{~mol}}=»-48 /-49<\mathrm{kJ} \mathrm{~mol}^{-1} » \checkmark$	Award [2] for correct final answer. Negative sign is required for M2.	2
1.	e	i	«initially steep because» greatest concentration/number of particles at start OR «slope decreases because» concentration/number of particles decreases \checkmark volume produced per unit of time depends on frequency of collisions OR rate depends on frequency of collisions \checkmark		2
1.	e	ii	mass/amount/concentration of metal carbonate more in X OR concentration/amount of $\mathrm{CH}_{3} \mathrm{COOH}$ more in $\mathrm{X} \checkmark$		1

Question			Answers	Notes	Total
2.	a		increasing number of protons OR increasing nuclear charge \checkmark «atomic» radius/size decreases OR same number of shells OR similar shielding «by inner electrons» \checkmark «greater energy needed to overcome increased attraction between nucleus and electrons»		2
2.	b		atomic/ionic radius increases \checkmark smaller charge density OR force of attraction between metal ions and delocalised electrons decreases \checkmark	Do not accept discussion of attraction between valence electrons and nucleus for M2. Accept "weaker metallic bonds" for M2.	2
2.	C		$\mathrm{P}_{4} \mathrm{O}_{10}(\mathrm{~s})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow 4 \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq}) \checkmark$	Accept " $\mathrm{P}_{4} \mathrm{O}_{10}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow$ $4 \mathrm{HPO}_{3}(\mathrm{aq})$ " (initial reaction).	1
2.	d		«series of» lines OR only certain frequencies/wavelengths \checkmark convergence at high«er» frequency/energy/short«er» wavelength \checkmark	M1 and/or M2 may be shown on a diagram.	2

Question			Answers	Notes	Total
2.	e	i	Mn \checkmark		1
2.	e	ii	$\mathrm{Mn}(\mathrm{s})+\mathrm{Ni}^{2+}(\mathrm{aq}) \rightarrow \mathrm{Ni}(\mathrm{s})+\mathrm{Mn}^{2+}(\mathrm{aq}) \checkmark$		1
2.	e	iii	wire between electrodes AND labelled salt bridge in contact with both electrolytes \checkmark anions to right (salt bridge) OR cations to left (salt bridge) OR arrow from Mn to Ni (on wire or next to it) \checkmark	Electrodes can be connected directly or through voltmeter/ammeter/light bulb, but not a battery/power supply. Accept ions or a specific salt as the label of the salt bridge.	2

Question			Answers	Notes	Total
4.	a		carbon: « $\frac{0.4490 \mathrm{~g}}{44.01 \mathrm{~g} \mathrm{~mol}^{-1}} »=0.01020$ «mol» / 0.1225 «g» OR hydrogen: « $\frac{0.1840 \times 2}{18.02} »=0.02042$ «mol» / 0.0206 «g» \checkmark oxygen: «0.1595-(0.1225 + 0.0206)» $=0.0164$ «g» / 0.001025 «mol» \downarrow empirical formula: $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{O} \checkmark$	Award [3] for correct final answer.	3
4.	b		temperature $=423 \mathrm{~K}$ OR $M=\frac{m R T}{p V} \checkmark$ $« M=\frac{0.150 \mathrm{~g} \times 8.31 \mathrm{JK}^{-1} \mathrm{~mol}^{-1} \times 423 \mathrm{~K}}{100.2 \mathrm{kPa} \times 0.0337 \mathrm{dm}^{3}}=» 156 « \mathrm{~g} \mathrm{~mol}^{-1} » \downarrow$	Award [1] for correct answer with no working shown. Accept " $p V=n R T$ AND $n=\frac{m}{M}$ " for $M 1$.	2

Question			Answers				Notes	Total
5.	a			Effect		Reason	Award [1 max] if both effects are correct. Reason for increasing volume: Accept "concentration of all reagents reduced by an equal amount so cancels out in K_{c} expression". Accept "affects both forward and backward rates equally".	2
			Increasing the volume, at constant temperature	none/no effect	AND	same number of «gas» moles/molecules on both sides V		
			Increasing the temperature, at constant pressure	moves to left	AND	«forward» reaction is exothermic $\sqrt{ }$		
5.	b	i	HCO_{3}^{-}- AND $\mathrm{H}_{2} \mathrm{O} \checkmark$					1
5.	b	ii	species that has one less proton/ H^{+}ion «than its conjugate acid» OR species that forms its conjugate acid by accepting a proton OR species that is formed when an acid donates a proton \checkmark				Do not accept "differs by one proton/ $/ h^{+}$ from conjugate acid".	1
5.	b	iii	oxide ion/ $\mathrm{O}^{2-} \checkmark$					1

Question			Answers	Notes	Total
5.	C		insufficient data to make generalization OR need to consider a «much» larger number of acids OR hypothesis will continue to be tested with new acids to see if it can stand the test of time \checkmark «hypothesis is false as» other acids/ $\mathrm{HCl} / \mathrm{HBr} / \mathrm{HCN} /$ transition metal ion/ BF_{3} do not contain oxygen OR other acids $/ \mathrm{HCl} / \mathrm{HBr} / \mathrm{HCN} /$ transition metal ion $/ \mathrm{BF}_{3}$ falsify hypothesis \checkmark correct inductive reasoning «based on limited sample» \checkmark «hypothesis not valid as» it contradicts current/accepted theories/BrønstedLowry/Lewis theory \checkmark		2 max

Question			Answers			Notes	Total
6.	a	i	oxidation/redox AND acidified «potassium» dichromate(VI) OR oxidation/redox AND «acidified potassium» manganate(VII) \downarrow			Accept "acidified «potassium" dichromate" OR "«acidified potassium" permanganate". Accept name or formula of the reagent(s).	1
6.	a	ii	ALTERNATIVE 1 using $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$: Compound A : orange to green $\boldsymbol{A N D}$ secondary hydroxyl OR Compound A: orange to green $\boldsymbol{A N D}$ hydroxyl oxidized «by chromium(VI) ions» \checkmark Compound B: no change AND tertiary hydroxyl «not oxidized by chromium(VI) ions» \downarrow ALTERNATIVE 2 using KMnO_{4} : Compound A: purple to colourless AND secondary hydroxyl OR Compound A: purple to colourless AND hydroxyl oxidized «by manganese(VII) ions» \downarrow Compound B: no change AND tertiary hydroxyl «not oxidized by manganese(VII) ions» \downarrow			Award [1] for "A: orange to green AND B: no change". Award [1] for "A: secondary hydroxyl AND B: tertiary hydroxyl". Accept "alcohol" for "hydroxyl". Award [1] for "A: purple to colourless AND B: no change" Award [1] for "A: secondary hydroxyl AND B: tertiary hydroxyl". Accept "purple to brown" for A.	2
6.	a	iii	Compound A B	Number of signals $\begin{aligned} & 5 \checkmark \\ & \hline 4 \checkmark \end{aligned}$	Ratio of areas 6:1:1:1:1 \checkmark 6:1:1:2 \checkmark	Accept ratio of areas in any order. Do not apply ECF for ratios.	4

